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ABSTRACT 
 Path planning algorithms are widely used in the field of robotics. Potential field algorithm in 
particular is widely employed owing to its simple and elegant mathematical model as well as 
computational efficiency. The primary purpose of getting rid of obstacles and movement towards the 
goal is met out. However it is also has certain limitations. In order to get rid of these limitations, the 
field algorithm is used along with a virtual obstacle. In this paper genetic algorithm is used to optimize 
an important parameter. The proposal convergence is elaborated to emphasize its reliability. The 
simulation results proved that the results are feasible and valid. 
Keywords: Path planning, Potential field, Genetic algorithm, Virtual obstacle, Robotics. 
 
 

1. INTRODUCTION 
 Robotics has attracted the attention of 

many researchers in the recent years. The 
thought of autonomous machines carrying out 
tasks for humans has always fascinated the 
research community. Technological 
advancements and requirement of more 
automation in daily life has resulted in new 
challenges. A robot should be able to reach the 
goal without colliding with any of the 
obstacles. To facilitate this there is a need to 
plan the path of the robot. This process is 
referred to as path planning. For achieving it 
potential field algorithm is used due to its 
profound advantages.  

 The Artificial Potential Field (APF) 
method was proposed by [1]. It can be viewed 
similar to a ball rolling downhill or an electric 
current passing through the lowest resistance 
path. Here a repulsive and attractive potential 
field is created around the obstacles and the 
goal respectively. When the robot moves the 
obstacles repel it whereas the goal attracts it. 
[2] described the Virtual Force Field (VFF) 
concept. A mathematical representation of the 
robot with the environment was derived and 

used to analyze the limitations of the potential 
field. Limitations such as cyclic behavior, 
absence of passage between obstacles placed at 
close distances and oscillations. [2, 3]. [4] 
combined the obstacle pruning method which 
used the visibility field concept and potential 
field method to find a solution to the Goals Not 
Reachable due to Obstacles Nearby (GNRON) 
problem. [5] applied this potential feed to 
upgrade the wall following behaviour. [6] 
incorporated the goal distance into the obstacle 
potential. As the distance from the obstacle 
increased the repulsive potential was made to 
change exponentially. This exponential 
decrease leads to various safety issues. [7] 
portrayed the hindrances as a set of linear 
segments and the repulsive potential as a line 
integral along the boundary and contour 
respectively. The linear integral calculation 
increased the computational cost. [8] modified 
the attractive potential by including the relative 
acceleration in the goal potential field. For 
tackling this scenario, a virtual obstacle concept 
for avoiding obstacles was putforward by [3]. 
The method was characterized by the 
introduction of a robot size factor in the 
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potential field. The safety margin around the 
obstacles could be modified by changing the 
value of this size factor. [9, 10, 11] further 
extended this concept into Dynamic Virtual 
Obstacle Avoidance (DVOC) in the motion 
planning of dynamic environments.  

2. MOTIVATION AND OBJECTIVES 
 Conventional APF possess various 

limitations. Hence many works are focused on 
getting rid of these limitations by applying 
minor changes to the potential field. This either 
increases the complexity of topography or the 
computational cost as an extra degree of 
freedom is introduced. Also, most of the works 
consider the robot as a point mass which is not 
the case in real life application. In plenty of 
works available in literature a safe distance is 
maintained around the obstacles. This is 
facilitated by the introduction of variable 
parameters which helps in clearing different 
levels. Depending upon the applications, the 
safety margins vary. Yet only some available 
methods have carried out the calibration of the 
corresponding parameters. The aim of the 
present work is to optimize path planning using 
artificial potential field as well as the virtual 
obstacle method explained in [3, 9]. This work 
optimizes the value of robot size factor using 
genetic algorithm. The main factor to be taken 
into account is the robot safety as the method is 
implemented in real time. Hence oscillations 
should be avoided for efficient operation and a 
fixed distance should be maintained around the 
obstacle. MATLAB was used to study the 
proposed method under different scenarios. The 
validity of the optimized parameter values were 
verified under numerous test cases. 

 
3. GENETIC ALGORITHM 

OPTIMIZATION APPROACH OF 
POTENTIAL FIELD VIRTUAL FORCE 

 
3.1. APF Approach-Background 

 The Classical APF method used for 
robot path planning is a gradient descent 
method. The repulsive potential field represents 
the workplace obstacles. The attractive 
potential field represents the goal. The potential 
function can be regarded as an energy function. 
The force vector pointing towards the 
decreasing potential direction corresponds to 
the negative gradient of the potential function. 
Consider that the robot is positioned at qr = [xr 
yr]

T, the goal is located at qg = [xg yg]
T and the 

position of the obstacles is at qoi = [xoi yoi]
T, 

where i = 1,2,3,..,n and n is the number of 
obstacles. Equation (3.1) and (3.2) represent the 
attractive force Fatt(qr) and the repulsive force 
frepi(qr) from the ith obstacle respectively. 
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where η and ζ represents the positive scaling 

factors,    denotes a positive constant, 
 (      ) represent the smallest distance from 
the  ith obstacle to the robot and   (      ) is a 
unit vector pointing the robot from the ith  
obstacle. 

 
3.2. Virtual obstacle approach 

 Our earlier works [3, 9] proposed the 
virtual obstacle concept. It ensures the safety of 
the robot by avoiding collision with obstacles 
and causing the robot to follow the shortest 
path. If the force from virtual obstacle is very 
strong, the robot may hit the obstacle. If it is 
very weak or absent the robot would follow a 
long detour around the obstacle. The force 
produced by this virtual obstacle is alike the 
force produced by a real obstacle but improved 
by a positive scaling factor, λ. Equation (3.3) 
shows the force produced by the 
aforementioned virtual obstacle. 
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where, fvo(qr) represents the virtual obstacle 
repulsive force from the virtual obstacle, ρ(qr, 
qvo) represents the smallest distance between 
the virtual obstacle and robot and  ρ(qr, qvo) 
represents the unit vector which points towards 
the robot. λ and fvo(qr) are inversely 
proportional to each other as deducted from 
(3.3). The virtual obstacle position is shown in 
equation (3.4). 
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where ρ(qr, qg) and min(ρ(qr, qoi) is the distance 
from robot to the goal and the closest obstacle 
respectively. 

 Figure A1 shows the advantage of 
using virtual obstacle with the potential field 
concept. Filled and hollow squares denote the 
obstacle and virtual obstacle, respectively, 
while the triangle denotes the goal. The total 
potential is plotted in figure A1. As can be seen 
in figure A1(a), a minimum potential exists at 
[2.5 0]T which is a local minimum. However, if 
a virtual obstacle is implemented as depicted in 
figure A1(b), the resulting potential field will 
be local minimum free. In the forthcoming 
sections, the following suppositions are made: 
1) the robot is integrated with a laser scanner 
positioned at the robot centre, 2) the highest 
distance ρo till which the obstacle potential can 
create an impact  on the robot is 2m; 3) default 
values of ζ = η = 1 unless otherwise stated, and 
4) the robot radius Rr corresponds to the highest 
step size allowable for a robot.  

 
3.3. Optimization of the robot size factor λ 

 A 2D workspace is depicted in figure 
A2. It exhibits a point robot positioned at qr = 
[0.5 1]T, an obstacle located at qo = [1.5 1]T and 
the target fixed at qg = [2 1]T. The circle 
denotes the robot, the triangle denotes the goal, 
and the square denotes the obstacle. The robot 
traces a longer path around the obstacle when λ 

= 0.5 and as the value of λ decreases the path 

becomes more nearer to the obstacle. 
Depending on the robot size and the needed 
path clearance the λ value can be adjusted. For 
larger values of size and clearance distance, , λ 

would be large. Also, if the uncertainty in 
sensor measurements in detecting the obstacles 
is high, a larger value of λ can be adopted. 

When the robot is moving at a larger step size 
or at a high speed, the force from virtual 
obstacle needs to be relaxed so that it does not 
hit the obstacle or enter within the clearance 
distance from the obstacle. The value of λ 

should be small for low speed motion as 
compared to a high speed motion. Also, λ is a 

measure of the strength of force produced by 
the virtual obstacle. Consequently, it helps to 
maneuver the robot at a safe distance from any 
obstacle, owing to the robot size. An extreme 
case arises when the robot and obstacle are 
moving in the same direction. When the virtual 
obstacle is absent or for a very large value of λ, 

the robot will be steered in a circle following 
the least potential path. 

 When the λ value is very small, the 
repulsive force of the virtual obstacle makes the 
normal obstacle force insignificant enabling a 
greater attraction between the robot and 
obstacle. Path length and robot safety should be 
the main factors in choosing the λ value. 

 An optimum value can therefore be 
determined offline and fed into the robot 
subject to the robot size being used for a certain 
application. A special test case needs to be 
considered to identify this parameter. Taking 
into account the disadvantages of classical 
potential theory described earlier, in the test 
case placing the obstacle and goal closer to 
each other would be a better option. Figure A3 
represents a simple test case with all these 
conditions. The robot moves with a constant 
step size. According to this case, the robot 
begins to move from the location qr = [-2 0]T 
and forwards to the obstacle positioned at qo = 
[0 0.1]T. qg = [0.5 0]T corresponds to the 
location of the goal. 

 As the robot, goal and obstacle are 
collinear a situation called local minima may 
arise. To avoid this, the obstacle is kept at a 
small offset of 0.1m. The value of λ which 

satisfies this case should be suitable for any 
other test case. It is intended that λ should 

avoid robot motion oscillations and should 
move the robot within the desired safety 
margins.  For implementing this a fitness 
function that regards both these conditions is 
created. The value at which the fitness function 
is minimized is called the optimal value. The 
objectives of the fitness function are explained 
as follows. 

3.3.1. Distance 

 Distance objective helps in maintaining 
a safe distance around the robot. At each 
position of the robot a safe variable is 
calculated s shown in equation (3.5) 

 
      (      )                   (3.5) 

 

 safe<0, safe=0 and safe> 0 suggests 
that the robot is within, exactly at and outside 
the safety margin respectively. safe≥0 is the 
highly desirable position as the robot has to 
maintain a suitable distance from the obstacle. 
safe<0 is highly unacceptable as it endangers 
the robot. A high penalty of w is placed on the 
robot for  safe < 0. For safe ≥ 0, the value of 
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safe is considered directly. Algorithm 1 shows 
the steps. Table 1 explains algorithm 1. 

Table 1.Algorithm 1 
Algorithm 1: Calculating parameter safe 

If safe ˂ 0 then 
safe = safe*w 

else 
safe = safe 

end if 
 

 Figure A4 depicts the enlarged view 
close to the goal of the robot path with diameter 
0.4m, step size = 0.1m and λ = 0.64. The safe 
value is found only for the robot positions 
between A and B. Prior to position A, the robot 
is at a distance higher than the needed 
clearance. After position B, it is at a larger 
distance than the radius and is maneuvering 
away from the obstacle. Therefore it is 
sufficient to ensure that the robot stays outside 
the safety region only from A to B. As the 
fitness function needs to be minimized the 
paths closer and farther from the obstacle must 
have larger values. Paths which match with the 
safety margin distance must have lower values. 
The objective distance, d, is represented in 
equation (3.6). 

 

  ∑ (
    

 
)
 

                                               (3.6) 

where S represents the normalizing factor. As 
stated earlier, since the maximum distance to 
which the obstacle potential can have effect is 
2m,  S is assumed to be 2. 

3.3.2. Angle 

 Angle parameter helps in minimizing 
the path oscillations. The angle between the 
two consecutive path segments A and B is 
shown in figure A5. Figure A5 shows the 
magnified view of the robot reaching the 
obstacle. λ = 0.8 and step size = 0.25m. The 

value falls within ±π radians. The parameter 
alphapath is calculated by means of equation 
(3.7) 
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where astep corresponds to the consecutive 
path segment angle. As astep represents the 
robot direction change between two 
consecutive steps, a turn in the range of ±π 

radians is allowed. Therefore, π normalizes as 
given in equation (3.7). 

3.3.3. Fitness function 

 Equation (3.8) represents the fitness 
function. 

 

                                           (3.8) 

where w1 is the assigned weight to alphapath 
and w2  is the weight assigned to d. Based on 
the size of the robot the weighting functions of 
algorithm 1 can be modified resulting in a 
better minima condition. Optimum results for λ 
were obtained at w1= w2=1 and w=20. 
Algorithm 2 shows the λ optimization steps. 
Table 2 explains algorithm 2. 

Table 2.Algorithm 2 
Algorithm 2: Optimization of λ 
Input: robot diameter, step size, clearance margin 
Output: λ 

For each λ ϵ [0,1] at interval 0.1 
Generate the robot path for test case 

Calculate d and alphapath  

Calculate fitness value 

Find the value of λ for which fitness is minimum 

 

4. RESULTS AND DISCUSSION 
 The fitness function is tested for 

different combinations of step size, robot 
diameter and safety margin. For running the 
test case the values of λ were chosen in the 
range [0, 1]. Figure A6(a) and figure A6(b) 
depicts the objectives d and alphapath plots. 
The fitness function is shown in figure A6(c) 
and figure 6(d) and test cases are shown in 
figure A6(e) and figure A6(f). Left plots 
represent the robot diameter 0.3m which 
maintain a 0.113m clearance around the 
obstacle moving at a step size of 0.1m. λ = 0.48 
provides the lowest fitness function values. As 
shown in figure A6(e), the robot travels through 
the safety margin boundary depicted by the red 
circle. Similarly, the right plots represent a 
robot diameter 0.4m at 0.4m clearance around 
the obstacle at 0.2m step size. In this case λ = 

0.78 provides the lowest fitness function 
values. The robot enters the safety margin by 
0.035m. An accuracy of 0.04m is observed in 
the safe path generation by this method. 

 Figure A7 depicts the test case for a 
robot diameter 0.7m moving at a step size of 
0.35m at a safety margin = 0.7*radius = 
0.245m. Using the fitness function, the optimal 
λ = 0.79. 
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5. CONCLUSION 
 In this work, the concept of virtual 

obstacle proposed by us in [3, 9] is improved 
for aiding a mobile robot in its path planning 
using artificial potential field. Due to the nature 
of virtual obstacle, it creates a distortion in the 
field around the robot enabling the robot to plan 
its path. Several methods in the literature, are 
limited by their complex potential functions 
and computational cost for real time 
implementation. The virtual obstacle concept 
has a potential function alike a real obstacle. 
Hence the computational concept is very less. 
The robot size factor λ taking part in the virtual 

obstacle potential function is optimized for 
ensuring a safe path around the obstacle. For 
static environment, λ is optimized for a given 

robot diameter, clearance margin and step size 
of the robot. A test case is chosen to evaluate 
and validate the performance of the optimized 
parameter in its ability to avoid obstacles, 
maintain the clearance margin and to reach a 
goal placed close to the obstacle. This 
optimization process can be done offline and 
the values are fed into a robot memory during 
its real time implementation. This enables a 
force field to be dynamically changed around 
the robot without incurring heavy 
computational cost in real time. With the use of 
virtual obstacle, the robot can maintain a 
desired clearance margin around the obstacles 
in both static and dynamic environments.  
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APPENDIX 
 

 
(a) Without virtual obstacle                  (b) With virtual obstacle 

Figure A1.One dimensional potential field with GNRON situation 

 

 

 

 Figure A2.The influence of the robot size factor on path’s length 
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Figure A3.A simple test case for a static environment 

 
                           Figure A4.The robot’s path for the test case with λ = 0:64; step size = 0.1m 

 

Figure A5.Test case with λ = 0.8; step size = 0.25m 
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Figure A6.Plots of objectives (top), fitness function (middle) and testcase paths (bottom) for robot diameter 0.3m 
(left) and 0.4m (right) 
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Figure A7.Testcase with a safety margin of 0.7*radius 

 

 

 


